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Super-resolution (SR) techniques present a suitable solution to increase the image resolution acquired 
using an ultrasound device characterized by a low image resolution. This can be particularly beneficial 
in low-resource imaging settings. This work surveys advanced SR techniques applied to enhance the 
resolution and quality of fetal ultrasound images, focusing Dual back-projection based internal learning 
(DBPISR) technique, which utilizes internal learning for blind super-resolution, as opposed to blind 
super-resolution generative adversarial network (BSRGAN), real-world enhanced super-resolution 
generative adversarial network (Real-ESRGAN), swin transformer for image restoration (SwinIR) and 
SwinIR-Large. The dual back-projection approach enhances SR by iteratively refining downscaling 
and super-resolution processes through a dual network training method, achieving high accuracy in 
kernel estimation and image reconstruction. Real-ESRGAN uses synthetic data to simulate complex 
real-world degradations, incorporating a U-shaped network (U-Net) discriminator to improve training 
stability and visual performance. BSRGAN addresses the limitations of traditional degradation models 
by introducing a realistic and comprehensive degradation process involving blur, downsampling, and 
noise, leading to superior real-world SR performance. Swin models (SwinIR and SwinIR_large) employ 
a Swin Transformer architecture for image restoration, excelling in capturing long-range dependencies 
and complex structures, resulting in an outstanding performance in PSNR, SSIM, NIQE, and BRISQUE 
metrics. The tested images, sourced from five developing countries and often of lower quality, enabled 
us to show that these approaches can help enhance the quality of the images. Evaluations on fetal 
ultrasound images reveal that these methods significantly enhance image quality, with DBPISR, 
Real-ESRGAN, BSRGAN, SwinIR, and SwinIR-Large showing notable improvements in PSNR and 
SSIM, thereby highlighting their potential for improving the resolution and diagnostic utility of fetal 
ultrasound images. We evaluated the five aforementioned Super-Resolution models, analyzing their 
impact on both image quality and classification tasks. Our findings indicate that these techniques hold 
great potential for enhancing the evaluation of medical images, particularly in development countries. 
Among the models tested, Real-ESRGAN consistently enhanced both image quality and diagnostic 
accuracy, even when challenged by limited and variable datasets. This finding was further supported 
by deploying the ConvNext-base classifier, which demonstrated improved performance when 
applied to the super-resolved images. Real-ESRGAN’s capacity to enhance image quality, and in turn, 
classification accuracy, highlights its potential to address the resource constraints often encountered in 
these settings.
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Medical imaging has revolutionized the field of healthcare, providing clinicians with a window into the human 
body1. Various imaging modalities, such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), 
and Ultrasound, have become indispensable tools for diagnosing diseases, guiding treatment, and monitoring 
patient health. Among these modalities, ultrasound has emerged as a popular choice due to its non-invasive 
nature, low cost, and real-time imaging capabilities2.

Fetal ultrasound imaging is a crucial diagnostic tool in prenatal care, allowing real-time visualization of 
fetal development and the early detection of potential abnormalities3. Operating at frequencies between 3-7.5 
MHz, these systems provide a non-invasive assessment of fetal anatomy, growth, and well-being. This technique 
is particularly valuable in developing countries due to its cost-effectiveness and portability4. Key clinical 
applications of fetal ultrasound include anatomical assessment and anomaly detection, fetal biometry and growth 
monitoring, placental location and assessment, and multiple pregnancy evaluation. Technical considerations for 
fetal ultrasound involve transducer frequency selection (typically 3-7.5 MHz), trade-offs between spatial and 
temporal resolution, acoustic impedance and tissue penetration, and signal processing and image formation5. 
However, ultrasound imaging, including its application in fetal care, is not without its limitations. The quality of 
ultrasound images can be affected by factors such as equipment limitations, operator expertise, and fetal position. 
Specifically in fetal imaging, image quality can be sensitive to maternal tissue characteristics and gestational age. 
These limitations can compromise the accuracy of diagnoses. More broadly, the quality of ultrasound images can 
be compromised by various factors, such as the skill level of the operator, the type of equipment used, and the 
presence of noise and artifacts6. Moreover, the resolution of ultrasound images is often limited by the frequency 
of the sound waves used, which can result in blurry or incomplete images. This can make it challenging for 
clinicians to accurately diagnose and treat diseases3.

Traditional image processing techniques, such as those described in7, including Hough transform for 
feature detection, histogram equalization for contrast enhancement, morphological operations, thresholding 
techniques, Haar-like feature extraction, and basic filtering methods (like discrete cosine transform and wavelet 
transform), have been used to improve the quality of medical images. These conventional techniques have 
served as fundamental tools for enhancing ultrasound image quality and extracting relevant features for fetal 
monitoring. However, these techniques have limitations in terms of preserving critical details and achieving 
realistic results. To overcome these limitations, researchers have turned to more advanced techniques, such as 
Super-resolution (SR).

SR is a new technique that creates sharp, detailed images from blurry or incomplete medical scans. It 
essentially “enhances” the original image, revealing a clearer view of the body’s internal structures. Traditional 
SR methods8–18 rely on interpolation and other mathematical techniques, but often struggle to preserve critical 
details and achieve realistic results. In contrast, the advent of Deep Learning (DL) has revolutionized the field of 
SR. Techniques like DBPISR19, Real-ESRGAN20, BSRGAN21, SwinIR and SwinIR_large22, each wielding its own 
unique strengths, leverage the power of DL algorithms, particularly Generative Adversarial Networks (GANs), 
to generate visually realistic and detailed HR images from blurry or incomplete medical scans.

Recent advancements have marked a turning point in medical imaging visibility, particularly in MRI, CT, 
and Ultrasound14,23. Images once obscured by blur or noise now reveal intricate details with unprecedented 
sharpness, providing doctors with a more precise view of the human body’s inner workings. This newfound 
clarity has revolutionized diagnostic accuracy, enabling more precise treatment plans, meticulous patient 
progress tracking, and ultimately, a higher standard of care.

The following SR techniques have emerged to address various challenges in medical image enhancement: 

	1.	� DBPISR19 utilizes a back-projection approach, iteratively refining high-resolution (HR) images based on 
low-resolution (LR) input and a learned deep network. This method excels in recovering details from highly 
degraded images.

	2.	� Real-ESRGAN20 addresses real-world degradations by mimicking complex blur and noise patterns encoun-
tered in clinical settings, improving performance on images acquired under diverse conditions.

	3.	� BSRGAN21 tackles “blind” SR, where the degradation model is unknown, employing innovative network 
architectures and loss functions to reconstruct HR images from LR images with complex distortions.

	4.	� SwinIR22 and SwinIR-Large22 combine Convolutional Neural Networks (CNNs) and Transformers, allowing 
it to model long-range dependencies within images. This unique approach results in improved detail preser-
vation and artifact reduction, creating clearer and more accurate anatomical views.

These innovations are vital for the future of medical imaging across various modalities. Enhanced MRI images 
reveal intricate anatomical structures, aiding in small lesion detection and facilitating precise quantitative 
analysis. Ultrasound images gain clarity, revealing subtle tissue structures, improving lesion detection accuracy, 
and guiding interventions with greater precision. OCT images benefit from sharper detail, allowing better 
visualization of retinal layers and blood vessels and aiding in early detection and management of retinal diseases. 
The field of SR in medical imaging continues to evolve, with ongoing research refining algorithms, exploring new 
applications, and pushing the boundaries of what’s possible. The potential for improving diagnostic accuracy, 
refining treatment planning, and enhancing patient monitoring is immense, making SR a vital tool in the 
ongoing quest for better healthcare.

In this paper, we focus on enhancing ultrasound images (US) using advanced image super-resolution 
techniques, including DBPISR19, Real-ESRGAN20, BSRGAN21, and SwinIR22. Our goal is to evaluate the 
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effectiveness of these techniques in producing high-resolution ultrasonic images. To assess the performance 
of these techniques, we employ image quality metrics such as Peak Signal-to-Noise Ratio (PSNR)24, Structural 
Similarity Index Measure (SSIM)24. These metrics enable us to quantify the improvements in image quality and 
clarity. To improve image quality assessment, two reference-free metrics, the Blind/Referenceless Image Spatial 
Quality Evaluator (BRISQUE)25 and the Naturalness Image Quality Evaluator (NIQE)26, have been incorporated. 
These metrics assess perceptual quality by analyzing spatial features and statistical properties of natural images, 
offering a quality evaluation that better aligns with human visual perception27–29.

The ultimate aim of this research is to determine whether advanced super-resolution techniques can 
significantly enhance the quality of ultrasound images, thereby transforming the field of medical imaging and 
diagnostics. Our contributions are as follows:

•	 We leverage tow diverse datasets, a Spanish open-source dataset30and a multi-country African dataset31 to 
evaluate super-resolution techniques on ultrasound images. This approach allows for a comprehensive anal-
ysis across different ultrasound devices and image categories, providing insights into the performance of 
super-resolution models in varied contexts.

•	 We apply state-of-the-art super-resolution models, including DBPISR, Real-ESRGAN, BSRGAN, and Swin-
IR, to enhance ultrasound image quality. These models address common issues such as low contrast and 
resolution, significantly improving the visual clarity and diagnostic utility of the images.

•	 We employ robust image quality metrics, including PSNR, SSIM, BRISQUE and NIQE, to quantitatively as-
sess the improvements achieved by each super-resolution model. This rigorous evaluation provides a clear 
comparison of model performance and highlights the effectiveness of each approach.

•	 We specifically train the DBPISR model on ultrasound datasets using TensorFlow’s Keras API, optimizing 
performance through techniques like bicubic interpolation and the Adam optimizer. This tailored training 
enhances the model’s ability to reconstruct high-resolution details from low-resolution inputs.

•	 We contrast the internal learning approach of the DBPISR model with the external learning strategies of 
pre-trained models like Real-ESRGAN, BSRGAN, and SwinIR. This comparison highlights the strengths and 
limitations of each approach, providing valuable insights into their applicability in different scenarios.

•	 We conduct an ablation study using the ConvNext_base classifier to evaluate the preservation of semantic 
content in super-resolved images. This study provides insights into the maintenance of critical diagnostic 
features, ensuring that enhanced images retain essential information for accurate diagnosis.

•	 We include a device-specific analysis to optimize ultrasound image quality using super-resolution techniques 
tailored to different ultrasound machines. This analysis aims to improve diagnostic accuracy in resource-con-
strained settings, offering practical solutions for enhancing medical imaging in diverse environments.

•	 We conducted a statistical significance analysis to compare the internal and external learning methods.
•	 We reinforced this study by incorporating a Mean Opinion Score (MOS) evaluation conducted by four experi-

enced gynecologists, providing a reliable and expertise-driven measure to assess image quality. This approach 
ensures that the study integrates domain-specific expertise, offering a robust metric to validate the diagnostic 
utility of the enhanced ultrasound images, complementing the other metrics employed in our analysis.

This paper is structured as follows: Section “Related works” provides an analysis of the existing literature on this 
area of study. In section “Materials and methods”, we delineate the materials employed and methods implemented 
in this investigation. Section “Assessing ultrasound super-resolution quality: a classification-based ablation 
study” presents a rigorous ablation study conducted to validate the experimental findings. A comprehensive 
analysis of the results obtained from applying Super-Resolution models across five African geographical regions 
is presented in Section Experimental results. In the conclusion section, a concise synthesis and critical analysis 
of the primary contributions delineated within this paper are provided.

Related works
SR techniques have become a cornerstone in medical image processing, particularly for enhancing the quality of 
ultrasound images32. This section provides a comprehensive review of the application of SR in medical imaging, 
with a specific focus on ultrasound. We will explore the evolution of these techniques, delve into the development 
of key deep learning architectures, and critically examine significant studies that have shaped this field. The 
fundamental aim of SR in medical imaging is to enhance the visibility of intricate anatomical structures, thereby 
facilitating more accurate diagnoses and improving the precision of measurements. The progression of SR 
techniques has led to substantial improvements in image quality and the amount of information that can be 
extracted from ultrasound images, spurring significant research and innovation to fully leverage the potential of 
SR across diverse medical applications.

Evolution of SR in medical imaging
The application of SR techniques in medical imaging has undergone significant evolution, transitioning from 
traditional interpolation-based methods to sophisticated deep learning approaches. Early efforts focused on 
enhancing image resolution through techniques like bicubic interpolation. However, the advent of deep learning 
marked a transformative phase in medical image enhancement. Researchers worldwide began exploring the 
potential of deep learning models to significantly improve image resolution. For instance, in the realm of 
Computed Tomography (CT) imaging, the Efficient Sub-Pixel Convolutional Network (ESPCN)33 demonstrated 
remarkable effectiveness in upscaling images while maintaining computational efficiency. Similarly, for 
ultrasound images, the Super-Resolution Convolutional Neural Network (SRCNN)34 emerged as a pivotal 
model. Studies indicated that SRCNN effectively reduces speckle noise, a common artifact in ultrasound imaging, 
leading to enhanced image clarity and superior visualization of soft tissue structures. Beyond the specific domain 
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of medical imaging, the broader field of computer vision saw the development of influential SR architectures 
like the Very Deep Super-Resolution Network (VDSR)16 and the Fast Super-Resolution Convolutional Neural 
Network (FSRCNN)15, which further inspired advancements in medical SR. More recently, the integration of 
large-scale datasets and computational resources has spurred the adoption of data-driven approaches, such as 
combining classical signal processing techniques (e.g., wavelet denoising and sparse coding) with deep networks. 
These hybrid models offer both interpretability and performance, making them especially relevant in clinical 
environments where explainability is often paramount35.

Fundamental SR architectures
Building upon these early successes, researchers began to explore more complex deep learning architectures 
tailored for the unique challenges of medical image SR. Van Sloun et al.36 provided a comprehensive overview of 
how deep learning methodologies could impact various facets of ultrasound imaging. Zhang et al.37 showcased 
the effectiveness of the Residual Dense Network (RDN) architecture across a range of image restoration tasks, 
including single image super-resolution, Gaussian image denoising, and artifact reduction, highlighting the 
versatility of deep residual learning. A significant advancement was the introduction of the Medical Super-
Resolution Generative Adversarial Network (MedSRGAN) by Gu et al.38. This deep learning framework employed 
a novel generator network to produce high-quality super-resolved medical images from low-resolution inputs. 
Evaluations on extensive datasets of thoracic CT and brain MRI scans demonstrated the generation of realistic 
images with preserved fine details, underscoring the potential for improved disease diagnosis and enhanced 
clinical utility. In addition to CNN-based models, autoencoder architectures have also found applications in 
medical SR. Autoencoders, when combined with residual connections and attention mechanisms, can learn 
compact representations of high-resolution features and subsequently generate detailed SR outputs39.

Advanced deep learning applications in medical SR
Further advancements in deep learning for medical SR focused on specific clinical applications, particularly 
in ultrasound imaging. Several studies targeted the improvement of microvascular imaging. Brown et al.40 
introduced SRUSnet, a convolutional neural network architecture designed for the simultaneous detection and 
localization of contrast microbubbles in ultrasound. Park et al.41 explored the use of deep learning for contrast 
agent-free Super-Resolution Ultrasound imaging (DL-SRU), enabling the visualization of red blood cells and 
the reconstruction of blood vessel geometry without the need for contrast agents. Pushing the boundaries of 
microvasculature visualization, Yi Rang et al.42 presented LOCA-ULM, a method combining deep learning and 
microbubble simulation to enhance localization performance even under high microbubble concentrations. 
These endeavors represent a fraction of the diverse and innovative approaches being explored for ultrasound 
image enhancement through deep learning. Beyond microvasculature, deep learning has demonstrated 
remarkable potential in enhancing overall image quality across various medical imaging modalities. Hanadi et 
al.43 investigated the use of super-resolution techniques, particularly Generative Adversarial Networks (GANs) 
like SRGAN44 and Enhanced Super-Resolution GAN (ESRGAN)45, to improve the resolution and detail of MRI 
images, demonstrating their utility in facilitating more accurate medical diagnoses.

Recent innovations and clinical applications
Recent research has continued to refine SR techniques and expand their clinical applications in medical 
imaging. Fiorentino et al.4 developed a neural network specifically for fetal ultrasound image processing, aiming 
to simultaneously improve image quality and resolution. Their review of 153 research articles highlighted the 
diverse methodologies and applications, including classification, detection, anatomical structure analysis, and 
biometric parameter estimation. Cammarasana et al.46 proposed a deep learning-based method to enhance the 
resolution of ultrasound imagery and videos, employing a visual interpolation technique followed by a trained 
learning model. Their results showed significant improvements in image quality across different anatomical 
areas and in 2D video super-resolution, holding promise for enhancing clinical practice. The clinical applications 
of these technologies are vast, spanning from fetal brain imaging to cancer lesion detection and cardiac function 
evaluation.

Building upon CNN-based architectures, recent works have begun incorporating transformer networks 
to capture long-range dependencies in medical images. Lu et al.47 presented the ESRT architecture, a hybrid 
design combining a lightweight convolutional neural network with a lightweight transformer module for 
enhanced detail and pattern recognition. The model demonstrated comparable reconstruction quality to more 
computationally intensive approaches with reduced memory usage. Moreover, attention mechanisms-both 
channel-wise and spatial-have been leveraged to selectively focus on crucial anatomical details, improving the 
clarity of fine structures often lost in low-resolution ultrasound images48.

Further expanding the applications of deep learning in ultrasound, wavelet-based approaches have gained 
traction for decomposing ultrasound images into multiple frequency bands, enabling more fine-grained feature 
extraction. Lyu et al.49 developed WSRGAN, a wavelet-based Super-Resolution Generative Adversarial Network 
for plane-wave ultrasound images, which incorporates wavelet transformations to preserve details often blurred 
by traditional pixel-based upsampling. This multi-scale strategy helps the network learn both global structures 
and intricate textures, greatly benefiting microvascular and fetal imaging tasks.

Another emerging trend in medical SR is domain adaptation, particularly for cases where large annotated 
datasets are scarce or where training and testing distributions differ significantly. Transfer learning and adversarial 
domain adaptation methods have been adopted to bridge the gap between simulation-based training data and 
real clinical datasets. For instance, advanced GAN-based domain adaptation frameworks allow a model trained 
on high-resolution CT or MRI data to be fine-tuned for ultrasound SR tasks50. Such strategies can alleviate the 
burden of collecting large-scale, high-quality ultrasound data while still achieving competitive performance. 

Scientific Reports |         (2025) 15:8376 4| https://doi.org/10.1038/s41598-025-91808-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The integration of deep learning has significantly propelled the advancement of super-resolution techniques 
in ultrasound imaging, moving from basic noise reduction models to sophisticated architectures like GANs, 
CNN-Transformer hybrids, and wavelet-based GANs. Li et al.51 presented a deep learning technique to enhance 
the detection and localization of thyroid nodules in ultrasound images, demonstrating superior diagnostic 
accuracy. These innovations have yielded substantial enhancements in image resolution, feature extraction, and 
diagnostic accuracy across a range of applications, including fetal and microvascular imaging, underscoring their 
transformative potential for advancing the precision and versatility of ultrasound diagnostics in clinical settings. 
Additionally, emerging works show the potential of SR in detecting abnormalities like fetal renal anomalies52, 
further emphasizing how these advancements can improve prenatal diagnostics and outcome predictions. As 
clinical trials and large-scale validation studies continue, it is expected that SR-enhanced ultrasound imaging 
will become a standard practice in modern healthcare systems.

By continually refining these approaches and addressing current challenges such as insufficient training data, 
domain shifts, and the need for interpretability SR methods are poised to transform medical ultrasound into an 
even more powerful diagnostic modality, with broad implications for patient outcomes and healthcare efficiency.

Materials and methods
Datasets
Spanish dataset The Spanish open-source dataset comprises 1792 patients, and it was collected at The Fetal 
Medicine Research Centre BC Natal30; it contains over 12400 gray-scale ultrasound (US) images that are divided 
into 5 categories: abdomen, brain, femur, thorax and others. The three ultrasound devices used here from GE 
Medical Systems: one Voluson E6, one Voluson S8, one Voluson S10, and one Aloka of Aloka CO. Curved 
transducers are used with a range of frequency : 3 - 7.5MHz without applying post-processing or artifacts.

African dataset Data were collected from five African countries for this dataset : Algeria, Egypt, and Malawi 
each contribute 100 images spanning four anatomical categories (abdomen, brain, femur, and thorax). Meanwhile, 
Ghana and Uganda contribute 75 images each, covering three categories (abdomen, brain, and femur). While 
both Algeria and Egypt use ultrasound machines from GE Medical Systems, they utilize different devices and 
probes: Algeria employs a Voluson S8 with a curvilinear transducer, offering a frequency range of 3 to 7.5 MHz. 
In contrast, Egypt uses a Voluson P8 with a curvilinear transducer fixed at 7 MHz. Malawi used the Mindray 
DC-N2 US machine with a curvilinear transducer at 3.5 MHz, and the dataset is from Queen Elisabeth Central 
Hospital. The US machine in Uganda Hospital is Siemens with a curved transducer with a range of frequency of 
3 - 7.5 MHz. In the Polyclinic Centre in Accra, Ghana, the ultrasonic imaging system is EDAN DUS 60 US with 
a curved transducer with a frequency range of 3.5 - 5 MHz. Ultrasound images frequently exhibit suboptimal 
quality due to low contrast, unclear tissue demarcations, hazy edges, and low resolution. Therefore, we use the 
appropriate deep learning architecture to enhance the quality of the US image. To rectify these shortcomings, we 
leverage a suitable deep learning architecture to enhance the quality of ultrasound images.

All the datasets are publicly available, so no approval was necessary for this work.
Medical imaging relies on interpolation techniques53 to resize or resample images without losing crucial 

information for accurate diagnosis. When working with ultrasound images, the choice of interpolation method 
is critical for preserving details and ensuring accurate representation. Popular methods include nearest neighbor, 
bilinear, bicubic, lanczos, and spline interpolation, each offering varying levels of computational complexity and 
detail preservation. In the first part, we utilized the entire Spanish open-source dataset (12,400 images), which 
encompasses five image categories: abdomen, brain, femur, thorax, and others. The ”others” category comprises 
a mixture of fetal images, including the abdomen, brain, femur, and thorax. The processed data is saved for 
use in the DBPISR model. In summary, the steps are preparing, training, and testing images in the US for a 
super-resolution task, after calculating image quality metrics, and finally saving the processed data in formats 
suitable for training the DBPISR model. On the other hand, we evaluated the performance of Real-ESRGAN, 
BSRGAN, and SwinIR models on all the datasets in this study. These models Real-ESRGAN, BSRGAN, SwinIR, 
were obtained from the following GitHub repositories: https://github.com/xinntao/Real-ESRGAN; ​h​t​t​p​s​:​/​/​g​i​t​h​u​
b​.​c​o​m​/​c​s​z​n​/​B​S​R​G​A​N​​​​​;​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​J​i​n​g​y​u​n​L​i​a​n​g​/​S​w​i​n​I​R​​​​​. In what follows, we present the metrics used to 
measure the quality improvements achieved.

Evaluation metrics

•	 PSNR The Peak Signal-to-Noise Ratio is widely used as the main metric to evaluate the performance of su-
per-resolution (SR)24. Mathematically, it is defined by the following : 

	
PSNR (ILR, IHR) = 10 · log10

(
M2

MSE(ILR, IHR)

)
� (1)

 where ILR represents the low-resolution image , IHR represents the high-resolution image, M is the maximum 
possible pixel value of a pixel in an image (for 8-bit RGB images, we are used to M=255), and MSE(ILR, IHR) 
is the mean squared error between images ILR and IHR.

•	 Loss Function A loss function is a type of learning strategy used in machine learning to measure prediction er-
ror or reconstruction error, and it provides a guide for model optimization24. Over the last few years, a variety 
of loss functions have been designed to train super-resolution models. One fundamental approach is the Pixel 
Loss, also known as Mean Squared Error (MSE) or L2 loss, which was implemented in the SRCNN model8. 
This loss function compares each pixel in the super-resolved (SR) image against its corresponding pixel in the 
high-resolution (HR) image, calculating the L2 norm of their difference: 
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LMSE = 1

n

n∑
i=1

∥HRi − SRi∥2
2� (2)

 where n is the total number of pixels, HRi represents the i-th pixel in the high-resolution image, and SRi 
represents the corresponding pixel in the super-resolved image. The double vertical bars ∥·∥2 denote the L2 norm 
calculation, which measures the Euclidean distance between the pixel values. The L2 loss is particularly effective 
for optimizing the Peak Signal-to-Noise Ratio (PSNR), a widely used metric for evaluating model performance. 
Many state-of-the-art models utilize MSE as their primary learning strategy due to its mathematical properties 
and optimization characteristics24.

•	 SSIM The Structural Similarity Index Measure (SSIM) provides a complementary evaluation metric that 
quantifies the structural similarity between the super-resolved image and the high-resolution reference im-
age24. The SSIM is defined as: 

	
SSIM(x, y) = (2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) � (3)

 where µx and µy  are the mean intensities, σ2
x and σ2

y  are the variances, σxy  is the covariance between the 
images, and c1 and c2 are constants to avoid division by zero. A higher SSIM value indicates greater structural 
similarity between the super-resolved and high-resolution images, suggesting better quality enhancement.

•	 BRISQUE The Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)25 is a no-reference model 
that quantifies image quality through perceptually relevant spatial features. For ultrasound images, BRISQUE 
operates by analyzing the normalized luminance coefficients: 

	
Î(i, j) = I(i, j) − µ(i, j)

σ(i, j) + C
� (4)

 where I(i, j) represents the ultrasound image intensity at position (i, j), µ(i, j) is the local mean, σ(i, j) is the 
local standard deviation, and C is a stability constant. The normalized coefficients are then modeled using a 
Generalized Gaussian Distribution (GGD): 

	
f(x; α, σ2) = α

2βΓ(1/α) exp
(

−
(

|x|
β

)α)
� (5)

 where α controls the shape of the distribution, β is the scale parameter, and Γ(·) is the gamma function. This 
model is particularly effective for ultrasound images as it captures both speckle noise characteristics and tissue 
texture patterns, providing a quality score that correlates well with human visual perception.

•	 NIQE The Naturalness Image Quality Evaluator (NIQE)26 assesses image quality without reference images by 
measuring deviations from statistical regularities observed in natural images. For ultrasound imaging, NIQE 
constructs a multivariate Gaussian model of image features: 

	
D(ν1, ν2) =

√
(ν1 − ν2)T

(Σ1 + Σ2

2

)−1
(ν1 − ν2)� (6)

 where ν1 and ν2 are the mean feature vectors of the natural image model and the test image respectively, and 
Σ1, Σ2 are their corresponding covariance matrices. This distance metric is particularly relevant for ultrasound 
images as it captures the natural statistics of tissue patterns and anatomical structures without requiring human-
rated distorted images for training. The NIQE score for an ultrasound image is computed as: 

	 NIQEscore = D(νnatural, νtest)� (7)

 where νnatural represents the feature model learned from high-quality ultrasound images and νtest is extracted 
from the test image. Lower NIQE scores indicate better perceptual quality, with particular sensitivity to the 
characteristic features of ultrasound imaging such as speckle patterns and tissue boundaries.

Overview of super-resolution strategies
In this work, we explored two main categories of deep learning approaches for Single Image Super-Resolution 
(SISR): internal learning and external learning. Internal learning, exemplified by the DBPISR model, does not 
rely on large external datasets; it learns exclusively from the target images (or a small set of similar images). 
In contrast, external learning approaches (BSRGAN, Real-ESRGAN, and Swin versions) employ models pre-
trained on large, diverse image datasets and then fine-tuned or directly applied to our ultrasound (US) data. The 
following sections detail these models’ architectures, training configurations, and our data preparation protocol.
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Training data preparation and configuration
All experiments were conducted using grayscale US images. We extracted patches from these images to form our 
training and validation sets, enabling the model to learn local details at various scales. Training was performed 
on an NVIDIA 6000 Ada GPU (48 GB). Table 1 shows our main training setup for DBPISR, representative of the 
global configuration used throughout our experiments.

Internal learning approach: DBPISR
Dual Back-Projection Based Internal Learning for blind super-resolution (DBPISR)19 reconstructs a High-
Resolution (HR) image from a Low-Resolution (LR) input without explicit knowledge of the degradation 
process. It builds on a dual network structure: 

	1.	� A downscaling network that learns to approximate the degradation kernel.
	2.	� A super-resolution network that upscales the LR image back to HR using only internal information from the 

image itself.

Both networks are jointly trained via a dual back-projection loss, ensuring consistency between the downscaling 
and upscaling processes. We adapted this architecture for ultrasound images using TensorFlow’s Keras API.

Training procedure

•	 Data preparation: We extracted grayscale patches from US images.
•	 Compilation: The model was compiled with MSE loss and the Adam optimizer (learning rate = 0.0003).
•	 Iterations: Training was conducted for 3000 iterations to ensure convergence.

Figure 1 illustrates the overall DBPISR structure.

External learning approaches: pre-trained models
BSRGAN21 is a blind super-resolution model that expands upon ESRGAN45, introducing an improved 
degradation model to handle more realistic degradations. The generator employs Residual-in-Residual Dense 
Blocks (RRDB) to extract and refine features before upsampling to HR resolution. A U-Net-based discriminator 
focuses on differentiating real from generated images, enhancing perceptual quality through adversarial training.

Training procedure:

•	 Two-step training: 

	 1.	� PSNR-oriented training of a baseline BSRNet for high Peak Signal-to-Noise Ratio.
	 2.	� Perceptual fine-tuning to sharpen results using adversarial and perceptual losses.

•	 Random degradation model: Blur, noise, and downsampling are applied in random orders to simulate re-
al-world conditions more effectively (Fig. 2).

Real-ESRGAN20 extends ESRGAN45 to tackle complex unknown degradations via a blind super-resolution 
approach. Its generator also uses RRDB blocks, and a U-Net discriminator is adopted for learning both local 
details and global structures (Fig.  3). High-order degradations—including multiple stages of blurring, noise 
addition, resizing, and JPEG compression—are synthesized on-the-fly during training. Training procedure:

•	 Blind SR setup: In the absence of high-quality paired data, the model is trained solely on synthetically degrad-
ed data.

•	 Losses: Adversarial and perceptual losses guide the generator to produce sharp and visually pleasing outputs.

SwinIR54 employs a transformer-based framework for super-resolution, denoising, and deblocking tasks. 
Unlike purely convolutional approaches, SwinIR uses self-attention mechanisms in both windowed and shifted-
window configurations, thereby capturing local and global dependencies within the image. The core components 
include shallow feature extraction (via a small CNN), deep feature extraction through multiple Residual Swin 
Transformer Blocks (RSTB), and a final reconstruction stage that merges learned features to generate high-
quality outputs. Figure 4 illustrates the general SwinIR structure.

Parameter Value

Type of images Grayscale (US)

Number of iterations 3000

Optimizer Adam

Learning rate 0.0003

GPU NVIDIA 6000 Ada (48 GB)

Scale ×4

Table 1.  DBPISR training configuration.
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Figure 2.  BSRGAN structure.

 

Figure 1.  DBPISR structure.
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During training, SwinIR can be adapted to various tasks by fine-tuning on domain-specific datasets. A 
combination of pixel-wise (L1 or L2), perceptual, and/or adversarial losses is commonly employed to balance 
fidelity and perceptual realism.

SwinIR-M (Middle Size) is typically trained on a moderately sized dataset suite, including DIV2K (800 
images), Flickr2K (2,650 images), and OST (10,324 images covering sky, water, grass, mountain, building, plant, 
and animals). This variant is efficient in terms of computational cost while still performing robustly on most 
standard super-resolution tasks.

SwinIR-L (Large Size) extends the training corpus to include WED (4,744 images), FFHQ (first 2,000 face 
images), Manga109 (manga/anime content), and SCUT-CTW1500 (first 100 training images containing text). 
This larger-scale dataset enables the model to capture a broader range of real-world degradations and content 
types, generally resulting in superior performance for diverse and challenging inputs. However, this improvement 
in image quality and generalization usually comes at the cost of increased computational requirements (larger 
model capacity and more training iterations).

Assessing ultrasound super-resolution quality: a classification-based ablation study
The objective assessment of the quality of images reconstructed by super-resolution models is often based 
on metrics such as PSNR and SSIM. Despite their utility in assessing image quality, those metrics may not 
completely represent the fidelity of reconstructed content. Therefore, this ablation study investigates the use of a 
high-performance image classifier as a complementary indicator of reconstruction quality.

We suppose that a successful Super-Resolution reconstruction should preserve the visual information 
required for a classifier to reach comparable or even better accuracy than that obtained on the original image. 
We also remark that a good image reconstruction, carried out by a Super-Resolution model, is not limited to 
a simple improvement in resolution or sharpness. Successful classification relies upon the preservation of key 
visual features that distinguish the primary object within an image. These discriminative characteristics are 

Figure 4.  SwinIR architecture54.

 

Figure 3.  Real-ESRGAN architecture20.
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important during classification since they allow one object to be distinguished from another. To validate this 
hypothesis, we will apply a classifier to images reconstructed by the enhancement models used previously. 
By comparing the classification metrics achieved on the original and reconstructed images, we will be able to 
estimate the effectiveness with which Super-Resolution preserves the semantic information crucial for object 
recognition. This analysis will determine the correlation between image metrics (PSNR, SSIM, BRISQUE, NIQE) 
and the preservation of semantic content as assessed by classification performance. To elaborate this strategy, we 
employed the ConvNext_base classifier because of its high-quality performance compared to other classifiers.

ConvNeXt_base classifier
Inspired by Vision Transformers, ConvNeXt, a pure convolutional architecture introduced in “A ConvNet 

for the 2020s”55, uses a hierarchical, pyramid-like structure to obtain competitive results on diverse Computer 
Vision tasks with notable simplicity and computational performance. ConvNeXt_base55has established itself in 
the scientific literature as a powerful convolutional neural network architecture. In constructing the architecture 
of ConvNext_base, the authors were inspired by advances in Vision Transformers (ViT) while remaining faithful 
to the simplicity and efficiency of classic Convolutional Neural Networks (CNN). So they have subtly combined 
optimized convolutional blocks and judicious architectural choices.

•	 Hierarchical feature extraction: The first step consists of hierarchical feature extraction: First, the input image is 
processed by an initial convolutional layer called (stem), reducing its resolution while increasing the number 
of channels. Afterwards, it is followed by a series of three “stages”, composed of repeated ConvNeXt blocks. A 
pyramidal representation is formed by successively downsampling spatial resolution and increasing channel 
depth at each stage. In each ConvNeXt block, there is a high-dimensional (7x7) depthwise convolution ca-
pable of capturing extensive spatial dependencies while remaining parameter efficient. Layer normalization, 
channel expansion/reduction, non-linear activation function (GELU), and residual connection mechanisms 
enrich these blocks, thus optimizing the learning of discriminative representations.

•	 Global aggregation: The next step is global aggregation, where the image is described by a rich and abstract 
feature map. A “global average pooling” procedure is then employed to synthesize the global information of 
this map into a single vector. The extracted feature vector gives a compact representation suitable for input to 
the final classification layer.

•	 Classification: The final step is classification: The vector resulting from the global aggregation is passed to 
a classifier, which consists of one or more fully connected layers. The classifier, constituted by one or more 
fully connected layers, applies to the input vector a probability of belonging to each class. The final layer is 
composed of one neuron per class, each outputting a score directly considered as the predicted probability of 
the corresponding class.

In summary, ConvNeXt_base analyzed the image with a hierarchy, extracting features at different scales in order 
to have an abstract and global representation. On the basis of the provided feature vector, the classifier predicts 
then the class of the image. Its architecture is presented in Fig. 5.

Experimental results
Having established the architecture and functionality of the ConvNext_base classifier, we now present the 
experimental results, including the performance metrics of the SR models and the corresponding classification 
outcomes obtained using the aforementioned classifier.

•	 Quantitative and qualitative assessment of super-resolution techniques: We apply the models to our datasets and 
assess their performance using these metrics: PSNR and SSIM. In the first part, we utilized the entire Spanish 
open-source dataset (12,400 images), which encompasses five image categories: abdomen, brain, femur, tho-
rax, and others. In the latter part, datasets from Algeria, Egypt, and Malawi contain four ultrasound image 
classes: abdomen, brain, femur, and thorax. Additionally, datasets from two African countries, Ghana and 
Uganda, include ultrasound images categorized into three groups: abdomen, brain, and femur. Each category 
across all African databases comprises 25 ultrasound images. The processed data is saved for use in the DB-
PISR model. In summary, the steps are preparing, training, and testing images the US for a super-resolution 
task, after calculating image quality metrics, and finally saving the processed data in formats suitable for train-
ing the DBPISR model. The DBPISR model utilized the bicubic interpolation technique, resulting in more 
than satisfactory outcomes on our databases. Following that, we evaluated samples from only four datasets 
for the other models. For that, We used pre-trained super-resolution models : REAL-ESRGAN20, BSRGAN21, 
SwinIR54 Table 2 presents these image quality measures for each model.

We utilize also Objective No-Reference Image Quality Assessment Metrics such as NIQE56 and BRISQUE56 to 
evaluate the quality of images without the need for a reference image. BRISQUE or Blind/Referenceless Image 
Spatial Quality Evaluator is an objective, no-reference metric for assessing image quality without the need 
for a pristine reference image. It functions by analyzing spatial natural scene statistics to detect and quantify 
distortions and deviations from the normative patterns of undistorted natural images. Elevated BRISQUE scores 
correspond to increased levels of degradation and diminished perceived image quality. The second metric called 
NIQE quantifies how much an image deviates from the statistical characteristics of natural images. Consequently, 
a higher NIQE score indicates a greater level of degradation and lower image quality. All measures are illustrated 
in Table 3.

For each anatomical region of the fetus, we generate a dataset of original images(First on the left) and 
upsampled images to 4X resolution (namely, DBPISR, BSRGAN, Real-ESRGAN, SwinIR, and SwinIR_large) 
and present the corresponding Fig. 6.
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To emphasize the detail captured by each super-resolution model used in our study, Fig. 7 presents close-up 
views of femur ultrasound images, focusing on the various details within the enhanced images. Comparing these 
close-ups allows for a visual analysis of how each model enhances specific aspects of the images.

•	 Classification performance evaluation The essential task of accurately evaluating Super-Resolution models 
classification performance was undertaken using three metrics. These metrics are detailed below. Accura-
cy57,58 measures correct predictions over total predictions. F1-score58, the harmonic mean of precision and 
recall, provides a robust metric for imbalanced datasets. Kappa59 assesses agreement between predicted and 
true labels, correcting for chance. According to this study59, higher values for all three indicate better perfor-
mance. The SR models were classified according to the protocol outlined in Table 4. In the training process, 
we applied the following augmentation techniques:

	– RandomHorizontalFlip: Randomly flips the image horizontally with a probability of 50%. This helps the 
model generalize better to symmetries in the dataset.

	– RandomVerticalFlip: Randomly flips the image vertically with a probability of 50%. Similar to horizontal 
flipping, this helps in learning invariance to the orientation of the images.

	– RandomRotation: Rotates the image by a random angle within a range of ±20 degrees. This simulates re-
al-world variations in image capture angles, improving the model’s ability to handle rotational variances.

	– ColorJitter: Adjusts brightness, contrast, and hue by random factors up to ±50%. This augmentation sim-
ulates variations in lighting conditions and color differences that may arise in different imaging devices or 
environments.

Model

Algeria Egypt Ghana Malawi Spain Uganda

LearningPSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

BSRGAN 33.77/0.82 34.12/0.84 37.95/0.91 34.57/0.84 34.36/0.87 35.94/0.92 External

Real-ESRGAN 32.93/0.80 35.04/0.89 37.73/0.91 33.86/0.84 33.67/0.82 35.48/0.92 External

SwinIR 32.20/0.76 31.56/0.71 33.51/0.80 32.80/0.76 32.37/0.78 32.52/0.82 External

SwinIR_Large 32.98/0.78 32.67/0.76 36.12/0.89 33.37/0.78 33.27/0.81 34.62/0.88 External

DBPISR 28.18/0.84 24.09/0.65 28.61/0.73 28.26/0.85 32.86/0.90 28.14/0.78 Internal

Table 2.  Super-resolution models performances: image quality evaluation in studied countries.

 

Figure 5.  ConvNeXt 55: (a) ConvNeXt architecture; (b) ConvNeXt block; (c) down-sampling.

 

Scientific Reports |         (2025) 15:8376 11| https://doi.org/10.1038/s41598-025-91808-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


To measure the impact of super-resolution, we compared classification results based on original and enhanced 
images (generated by five super-resolution models) across datasets from Algeria, Egypt, Ghana, Malawi, Spain, 
and Uganda. Results are presented in Tables 5 (Spain) and 6 (Algeria, Egypt, Ghana, Malawi, and Uganda).

Discussion
First, we discuss the results of the Super-Resolution models utilized for analyzing ultrasound images across 
different countries in (A.), and then the classification results are examined in (B.). 

	A.	� Super-Resolution Enhancement: Analytical Interpretation and Evaluation

•	 Ultrasound imaging technology: a comparative overview Before, we noted that Consistency column in Ta-
bles 7 and 8, is based on a statistical analysis (percentile calculation, standard deviation computation, and 
mean difference calculation) of the models’ performance results, with the terms “High,” “Good,” “Moder-
ate,” and “Average” reflecting the observed variability in performance. A model classified as “High” exhibits 
low variability, producing highly stable outputs. A “Good” model demonstrates moderate variability, offer-
ing generally consistent performance with slight fluctuations. A “Moderate” model shows greater variabili-
ty compared to “Good,” while an “Average” model is characterized by high variability, with larger deviations 
in its performance. 

	 (a)	� Algeria and Egypt:

In the Algerian case, and according to Tables  3, 7 and Fig.  8, the evaluation of Super-Resolution model 
performance highlights notable differences across the various approaches. After recalculating the PSNR and 
SSIM metrics for the studied models, the SSIM of BSRGAN remained unchanged and it is still emerges as the 
most effective, demonstrating superior performance across both precision and perceptual quality metrics. With 
the highest PSNR (35.21 dB) and SSIM (0.882), coupled with exceptional perceptual quality scores (NIQE: 8.98 
± 6.06 and BRISQUE: 44.28 ± 5.17), BSRGAN consistently delivers visually sharp and reliable outputs. These 
results, detailed in Table 3, underscore its robust capability to minimize variability while maintaining high visual 
fidelity, making it the optimal model for application in the Algerian context. Ranked second, Real-ESRGAN 
achieves a median PSNR of 33.63 dB and a SSIM of 0.847. Although it falls slightly short of BSRGAN in terms 
of precision, its perceptual quality metrics (NIQE: 12.73 ± 8.01, BRISQUE: 63.69 ± 6.68) remain competitive. 
This combination of visual stability and acceptable overall performance positions Real-ESRGAN as a reliable 

Country Model NIQE (Mean ± Std. Dev. *) BRISQUE (Mean ± Std. Dev. *)

Algeria BSRGAN 8.98 ± 6.06 44.28 ± 5.17

DBPISR 19.62 ± 5.65 84.74 ± 17.95

Real-ESRGAN 12.73 ± 8.01 63.69 ± 6.68

SwinIR 29.81 ± 18.10 65.09 ± 9.94

SwinIR_Large 29.08 ± 23.24 59.91 ± 7.93

Egypt BSRGAN 7.67 ± 4.06 68.69 ± 6.74

DBPISR 19.50 ± 4.58 68.69 ± 6.74

Real-ESRGAN 3.78 ± 2.20 56.24 ± 4.32

SwinIR 51.41 ± 29.60 49.82 ± 8.98

SwinIR_Large 38.59 ± 28.62 42.99 ± 6.55

Ghana BSRGAN 2.18 ± 1.10 44.15 ± 11.29

DBPISR 9.56 ± 3.75 89.84 ± 10.94

Real-ESRGAN 1.34 ± 0.41 59.74 ± 8.43

SwinIR 11.56 ± 8.26 55.12 ± 9.11

SwinIR_Large 8.96 ± 8.62 51.13 ± 8.21

Malawi BSRGAN 6.42 ± 2.82 41.63 ± 5.09

DBPISR 14.53 ± 3.52 77.83 ± 13.36

Real-ESRGAN 6.73 ± 2.22 59.42 ± 3.96

SwinIR 27.32 ± 16.35 58.42 ± 9.09

SwinIR_Large 25.27 ± 16.12 54.96 ± 6.65

Uganda BSRGAN 3.95 ± 1.21 43.20 ± 2.98

DBPISR 14.33 ± 4.57 83.41 ± 11.20

Real-ESRGAN 3.69 ± 0.79 63.10 ± 4.81

SwinIR 11.45 ± 6.19 47.68 ± 2.80

SwinIR_Large 6.73 ± 3.90 53.97 ± 3.23

Table 3.  NIQE and BRISQUE scores by country and models. *Std. Dev. is the abbreviation for Standard 
Deviation
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alternative for applications that demand robust and consistent results. However, the SSIM of SwinIR_Large 
model has decreased from 0,88 to 0.852 and its PSNR is now 34.27 dB. Albeit effective in certain tasks, SwinIR_
Large is constrained by its weaker perceptual quality metrics (NIQE: 29.08 ± 23.24, BRISQUE: 59.91 ± 7.93). 
Furthermore, the presence of prominent outliers in the SSIM distribution, as shown in the boxplot in Fig. 8d, is 
noteworthy. These outliers indicate challenges in consistently reconstructing certain images with high structural 
fidelity. When coupled with the significant variability in NIQE scores, these limitations reduce the model’s 
reliability for applications that demand consistent and high-quality visual reconstruction. SwinIR exhibits 
comparatively weaker performance, as reflected by its perceptual quality metrics (NIQE: 29.81 ± 18.10 and 
BRISQUE: 65.09 ± 9.94). Furthermore, its lower PSNR (33.48 dB) and SSIM (0.839), combined with considerable 
variability, underscore its limitations. These shortcomings make SwinIR less suitable for applications that require 
consistent and high-quality image reconstruction. DBPISR ranks at the bottom of the evaluation, demonstrating 
the weakest overall performance. While it achieves a PSNR of 28.18 dB and a SSIM of 0.836, its perceptual 
quality metrics (NIQE: 19.62 ± 5.65, BRISQUE: 84.74 ± 17.95) reveal a high incidence of visual artifacts and 
suboptimal reconstruction quality, further emphasizing its limitations in delivering reliable outputs.

In the Egyptian context, the performance of Real-ESRGAN on the ultrasound device, using a 7 MHz 
transducer, was particularly noteworthy. As shown in Tables 3, 8 and Fig. 8b, Real-ESRGAN stands out as the 
top-performing model in the evaluation, achieving the highest PSNR (35.40 dB) and SSIM (0.909), indicative 
of exceptional fidelity and strong structural alignment. The model exhibits remarkable consistency, ensuring 
stable and reliable outcomes across various scenarios. Its ability to produce sharp details and achieve the lowest 
NIQE score (56.24 ± 4.32) highlights its capability to deliver realistic and visually pleasing reconstructions. 
Furthermore, the model achieves the lowest BRISQUE score (3.78 ± 2.20), underscoring its superior perceived 
image quality. While it occasionally accentuates graininess, this minor drawback is outweighed by its overall 
performance advantages. These attributes position RealESRGAN as the most suitable choice for high-quality 
image restoration tasks, particularly in contexts where fidelity and realism are critical. BSRGAN demonstrates 
robust performance with a PSNR of 33.98 dB and an SSIM of 0.856, slightly lower than Real-ESRGAN but 
still indicative of high-quality output. The model maintains good consistency, ensuring reliable results across 
different inputs. It excels in producing sharp images with a relatively low NIQE score (68.69 ± 6.74), although 
this score is higher than that of Real-ESRGAN, suggesting a marginally less realistic appearance. The BRISQUE 
score of 7.67 ± 4.06 remains commendable, albeit slightly inferior to Real-ESRGAN, indicating a good but 
slightly diminished perceived image quality. Minor artifacts may be present, but their impact on the model’s 

Figure 6.  Original vs reconstructed US images: a comparison of (a) DBPISR, (b) BSRGAN, (c) real-ESRGAN, 
(d) SwinIR, and (e) SwinIR-large models.
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SR models Accuracy F1 score Kappa

DBPISR 96.18% 95.24% 94.54%

BSRGAN 95.90% 95.04% 94.22%

Real-ESRGAN 96.36% 95.62% 94.76%

SwinIR 96.27% 95.23% 95.41%

SwinIR_large 96.18% 95.27% 94.83%

Original 95.18% 94.09% 93.16%

Table 5.  Performance of super-resolution models for image classification on the spanish dataset (super-
resolved and original).

 

Step Original images Super-resolved images

Objective Compare classification performance metrics (Accuracy, F1, Kappa) between original and super-resolved images using the ConvNeXT_base classifier.

Data acquisition -Spanish dataset: zenodo.org/record/3904280 -African dataset*: zenodo.org/records/7540448 -Number 
of images: 12,400 (Spain), 100 (Algeria, Egypt, Malawi), 75 (Ghana, Uganda)

-From SR models: BSRGAN, DBPISR, Real-
ESRGAN, SwinIR, SwinIR_Large applied to 
Spanish and African datasets*

Data preparation -Augmentation: Yes -Image size: 448
-Super-resolution transformation: Enhances 
image quality before classification. 
-Augmentation and size: Same as original images

Models -Classifier: ConvNeXT_base -Classifier: ConvNeXT_base

Training -Optimizer: Adam -Loss function: Cross_Entropy_Loss -Learning rate: 0.0001 -Epochs: 100 -Batch 
size: 32 -GPU: NVIDIA A6000 Ada (48GB) -Same training parameters as original images

Evaluation -Metrics: Accuracy, Kappa, F1-score -Metrics: Same metrics as original images

Table 4.  Protocol for image classification using original and super-resolved images. * African Dataset includes 
Algeria, Egypt, Ghana, Malawi, Uganda

 

Figure 7.  (a–f) Close-up views of femur US images from five different SR models (Malawi).
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overall performance is negligible. These characteristics establish BSRGAN as a reliable model for generating 
sharp and visually pleasing images, making it a strong alternative, albeit with slightly lower perceived quality 
compared to Real-ESRGAN. SwinIR_Large demonstrates moderate performance, achieving a PSNR of 32.73 
dB and an SSIM of 0.773, reflecting reasonable but not exceptional image fidelity. The model exhibits average 
consistency, with noticeable variability in output quality. While the SSIM is acceptable and the NIQE score of 
42.99 ± 6.55 is lower than that of BSRGAN, it remains relatively high, suggesting room for improvement in 
perceived image realism. The BRISQUE score of 38.59 ± 28.62 further highlights this variability, indicating 
inconsistent perceived quality across different outputs. This variability in performance may present challenges 
for applications requiring consistent and high-quality image restoration, limiting the model’s suitability for 
such use cases. SwinIR shows lower performance compared to other models, with a PSNR of 31.51 dB and an 
SSIM of 0.717, reflecting reduced fidelity and structural accuracy. While it is efficient in processing, this comes 
at the expense of output quality, as indicated by its high BRISQUE (51.41 ± 29.60) and NIQE (49.82 ± 8.98) 
scores, which highlight subpar perceived quality and less realistic reconstructions. DBPISR exhibits notably 
poor performance, with a PSNR of 24.10 dB and an SSIM of 0.647, reflecting low fidelity and structural accuracy. 
The model shows high variability in output and limited realism, as indicated by its high NIQE score (68.69 ± 
6.74). While its BRISQUE score (19.50 ± 4.58) is better than SwinIR’s, it remains inferior to Real-ESRGAN 
and BSRGAN, underscoring its mediocre perceived quality. These shortcomings render DBPISR unsuitable for 
applications requiring high-quality image reconstruction. The outcomes of the improvement models applied 
in Algeria and Egypt with their ultrasound equipment have presented significant differences that may affect 
the choice of the Super-Resolution model depending on the clinical context and the material constraints of the 
devices employed in these countries. 

	(b)	� In Ghana, Malawi, and Uganda: The models were evaluated using established image quality metrics, includ-
ing NIQE, BRISQUE, PSNR, and SSIM. Notably, lower NIQE and BRISQUE scores correlate with superior 
perceptual quality and a more natural appearance, as shown in Table 3 and in Table 9.

Within the Ghanaian context, an exhaustive evaluation was undertaken encompassing five Super-Resolution 
(SR) models: BSRGAN, Real-ESRGAN, DBPISR, SwinIR, and SwinIR_Large. Among these, BSRGAN and 
Real-ESRGAN distinguished themselves as the foremost performers, exhibiting superior efficacy in augmenting 
image quality. Both BSRGAN and Real-ESRGAN demonstrate comparable performance metrics concerning 

SR model Median PSNR (dB) Median SSIM Consistency Advantages Disadvantages

Real-ESRGAN 35.40 0.909 High Sharp details, low NIQE Grain accentuation possible

BSRGAN 33.98 0.856 Good Sharp images, low NIQE Minor artifacts

SwinIR_Large 32.73 0.773 Moderate Decent SSIM, reasonable NIQE Variability in quality

SwinIR 31.51 0.717 Average Efficient processing Lower fidelity, high NIQE

DBPISR 24.10 0.647 Low Simple structure preservation Poor PSNR, high variability

Table 8.  SR models performances: Egypt.

 

SR model Median PSNR (dB) Median SSIM Consistency Advantages Disadvantages

BSRGAN 35.21 0.882 High Low NIQE, sharp images Potential slower processing

Real-ESRGAN 33.63 0.847 Good Consistent quality, low NIQE Slightly lower PSNR

SwinIR_Large 34.27 0.852 Moderate Improved SSIM, decent NIQE Variability in quality

SwinIR 33.48 0.839 Average Structure preservation High NIQE, variability

DBPISR 28.18 0.836 Low Some structural integrity High BRISQUE, poor PSNR

Table 7.  SR models performances: Algeria.

 

Algeria Egypt Ghana Malawi Uganda

 SR models Accuracy F1 score Kappa Accuracy F1 score Kappa Accuracy F1 score Kappa Accuracy F1 score Kappa Accuracy F1 score Kappa

DBPISR 69% 51.40% 44.45% 71% 64.56% 56.28% 48% 38.25% 34.1% 57% 42.64% 32.2% 53.34% 34.5% 31.16%

BSRGAN 85% 72.64% 79.87% 51% 50.22% 58.4% 4% 5.77% 11.76% 60% 58.17% 58.84% 5.33% 6.89% 0%

Real-ESRGAN 96% 78.31% 92.33% 68% 62.94% 64.5% 18.67% 22.05% 17.10% 79% 68.91% 71% 18.67% 21.8% 15.9%

SwinIR 94% 77.09% 88.04% 64% 60.42% 64.09% 12% 15.61% 7.45% 84% 72.52% 75% 10.67% 13.69% 5.6%

SwinIR_large 84% 72.39% 80% 63% 59.75% 66.6% 5.33% 7.28% 4.73% 59% 56.8% 64.13% 17.33% 20.45% 15.68%

Original 85% 72.74% 80.67% 62% 59.5% 62.33% 5.33% 7.54% 2.96% 66% 62.37% 62.8% 18.67% 21.87% 13.95%

Table 6.  Performance of super-resolution models for image classification across multiple countries (super-
resolved and original).
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the Structural Similarity Index Measure (SSIM), with each model attaining a value of 0.91. However, BSRGAN 
exhibits a marginally enhanced Peak Signal-to-Noise Ratio (PSNR), registering 38 dB in contrast to 37.8 
dB achieved by Real-ESRGAN. Consequently, the selection between these models hinges on the relative 
prioritization of detail fidelity (PSNR) versus structural congruence (SSIM). In the realm of perceived image 
quality metrics, Real-ESRGAN records a lower Naturalness Image Quality Evaluator (NIQE) score of 1.34, 
indicative of a heightened natural appearance in the generated imagery. In stark contrast, BSRGAN secures 
a more favorable Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) score of 44.15, thereby 
signifying a superior overall perceived image quality when juxtaposed with Real-ESRGAN’s score of 59.74. 
Furthermore, the remaining models-DBPISR, SwinIR, and SwinIR_Large-exhibit markedly elevated NIQE and 
BRISQUE scores, underscoring their relatively inferior perceived quality. In the Malawian context, an extensive 
evaluation was conducted encompassing five Super-Resolution (SR) models: BSRGAN, Real-ESRGAN, DBPISR, 
SwinIR, and SwinIR_Large. Among these, BSRGAN and Real-ESRGAN emerged as the foremost performers, 
demonstrating superior efficacy in enhancing image quality with an SSIM value equals to 0.84. Though 
BSRGAN demonstrated a marginally superior Peak Signal-to-Noise Ratio (PSNR) of 34.6 dB compared to 33.9 
dB for Real-ESRGAN. Regarding perceived image quality, BSRGAN achieved lower Naturalness Image Quality 
Evaluator (NIQE) and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) scores of 6.42 and 41.63, 
respectively, compared to Real-ESRGAN’s 6.73 and 59.42. The remaining models like DBPISR, SwinIR, and 
SwinIR_Large exhibited significantly higher NIQE and BRISQUE scores, indicating inferior perceived quality. 
Consequently, similar to findings in the Ghanaian case , the selection between BSRGAN and Real-ESRGAN for 
medical imaging applications in Malawi should be guided by specific priorities, favoring BSRGAN for overall 
image quality or Real-ESRGAN for improved naturalness. In Uganda, among five Super-Resolution models, 
BSRGAN and Real-ESRGAN demonstrated superior performance with identical SSIM scores of 0.92. BSRGAN 

Countries Best SR model Median PSNR (dB)/SSIM Advantages Disadvantages

BSRGAN Real-ESRGAN

Ghana BSRGAN or real-ESRGAN 38/0.91 37.8/0.91 High PSNR (Real-ESRGAN), Similar 
SSIM,Low NIQE, Low BRISQUE.

Choice depends on the relative importance 
of: PSNR,SSIM, BRISQUE and NIQE.

Malawi BSRGAN or real-ESRGAN 34.6/0.84 33.9/0.84 Good PSNR and SSIM. Low NIQE for both Choice depends on the relative importance 
of: PSNR, SSIM, BRISQUE and NIQE.

Uganda BSRGAN or real-ESRGAN 35.9/0.92 35.5/0.92 Excellent SSIM, comparable PSNR. Low 
BRISQUE ans NIQE for both

Choice depends on the relative importance 
of: PSNR,SSIM, BRISQUE and NIQE.

Table 9.  SR model performances for Ghana, Malawi, and Uganda.

 

Figure 8.  PSNR, SSIM and (PSNR/BRISQUE) box-plots of the five SR models: (a) BSRGAN, (b) real-
ESRGAN, (c) Swin, (d) Swin_large and (e) DBPISR. These box plots show the PSNR/SSIM statistics calculated 
on a set of 100 images for both Algeria and Egypt; the enhancement of these networks is 4X.
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slightly outperformed Real-ESRGAN in PSNR (35.9 dB vs. 35.5 dB) and achieved better overall perceived quality 
through lower BRISQUE scores (43.20 vs. 63.10). Conversely, Real-ESRGAN exhibited enhanced naturalness 
with a superior NIQE score (3.69 vs. 3.95). DBPISR, SwinIR, and SwinIR_Large recorded significantly higher 
NIQE and BRISQUE scores, indicating inferior perceived quality. To summarize, Real-ESRGAN is favored in 
both Ghana and Uganda for its superior naturalness, as indicated by lower NIQE scores, whereas BSRGAN is 
preferred for its enhanced overall image quality, demonstrated by better BRISQUE scores. In Malawian context, 
BSRGAN markedly surpasses Real-ESRGAN in both PSNR and perceived quality metrics, making it the optimal 
choice for high-fidelity medical imaging. Other models, including DBPISR and SwinIR, exhibit significantly 
inferior performance in both fidelity and perceived quality. Consequently, BSRGAN is recommended for 
applications prioritizing comprehensive image quality, while Real-ESRGAN is suitable when image naturalness 
is paramount.

Figure 9 shows the box plots of the statistics of the PSNR,SSIM and BRISQUE metrics for the three ultrasound 
machines utilized in Ghana, Malawi, and Uganda, respectively.

The objective of this statistical test is to select the optimal SR model from the five SR models : then, we 
verified the statistical significance of all SR models used in this study, by analysis of variance (ANOVA) at 0.05 
level of significance, and we obtained scatter plots in Figs. 10 and 11 that visualizing as the relationship between 
SSIM and PSNR, analyzed to assess the performance of SR models trained on ultrasound images, comparing the 
efficacy of internal and external training datasets.

We noted:

	– A strong positive correlation between (PSNR, SSIM) and (PSNR, BRISQUE) is consistently observed across 
all plots, indicating that higher signal fidelity generally corresponds with improved structural preservation in 
the enhanced images.

	– Externally trained SR models consistently outperform their internally trained counterparts, achieving higher 
PSNR and SSIM values. This underscores the critical role of diverse, external training data in developing 
robust Super-Resolution models capable of achieving superior reconstruction quality. However, performance 
variations are observed among the externally trained models, highlighting that model architecture and the 
specific training data utilized significantly influence a model’s effectiveness.

Optimal Super-Resolution model selection depends on the specific image characteristics of each ultrasound 
system employed in these developing countries.

In order to further explore the implications of the statistical analysis done in (A.), we will interpret the results 
obtained during the classification of the original images and the super-resolved images of the five SR models. 

	B.	� Classification results: analysis and evaluation 

	– Spanish dataset: The Table 10 below compares the performances obtained when we carried out the clas-
sification of the original ultrasound images and those reconstructed by the Super-Resolution models. To 

Figure 9.  PSNR, SSIM and (PSNR/BRISQUE) box-plots of the five SR models: (a) BSRGAN, (b) real-
ESRGAN, (c) swin, (d) Swin_large and (e) DBPISR. These box plots show the PSNR/SSIM statistics calculated 
on a set of 75,100 and 75 images resp. for: Ghana, Malawi and Uganda; the enhancement of these networks is 
4X.
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assess the effect of using it, we evaluated performance using three established metrics: Accuracy, F1 Score, 
and Kappa.

For the initial model (DBPISR), performance metrics revealed improvements as follows: accuracy increased by 
1.00%, the F1-score by 1.15%, and the kappa statistic enhanced by 1.38%. The SwinIR model shows comparable 
increases: accuracy (+1.09%), F1-score (+1.14%), and Kappa (+2.25%), suggesting greater classification 
robustness. However, the BSRGAN model demonstrates no measurable advantage for image classification in 
this context. The Real-ESRGAN model does a slightly better performance than DBPISR, increasing accuracy 
by 1.18%, F1-score by 1.53%, and Kappa by 1.60%. Interestingly, while the SwinIR_large model doesn’t change 
accuracy, it increases F1-score by 1.18% and Kappa by 1.67%.

SR model Accuracy difference F1 score difference Kappa difference

DBPISR +1.00% +1.15% +1.38%

BSRGAN +0.72% +0.95% +1.06%

Real-ESRGAN +1.18% +1.53% +1.60%

SwinIR +1.09% +1.14% +2.25%

SwinIR_large 0.00% +1.18% +1.67%

Table 10.  Impact of super-resolution on image classification metrics: a Spanish case study.

 

Figure 11.  Ghana vs. Malawi vs. Uganda: a scatterplot analysis of DBPISR (internal learning) and BSRGAN, 
real-ESRGAN, SwinIR, SwinIR_large (external learning) performances.

 

Figure 10.  Algeria vs. Egypt: a scatterplot analysis of DBPISR (internal learning) and BSRGAN, real-ESRGAN, 
SwinIR, SwinIR_large(external learning) performances.
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We observe that Real-ESRGAN leads accuracy improvements (+1.18%) followed by DBPISR (+1.00%) and 
SwinIR (+1.09%), while SwinIR_large showed negligible gains (<0.1%). Real-ESRGAN also topped F1-score 
improvement (+1.53%), with DBPISR, SwinIR, and SwinIR_large showing similar increases ( 1.15%). However, 
SwinIR significantly improved Cohen’s Kappa (+2.25%), suggesting superior error reduction, followed by 
SwinIR_large (+1.67%) and Real-ESRGAN (+1.60%). These Kappa improvements confirm performance gains 
beyond chance.

	– African datasets Table 6 reports the performance of five SR models for classifying ultrasound images from 
African countries (Algeria, Egypt, Ghana, Malawi and Uganda) using the three same metrics: accuracy, F1-
score, and Kappa coefficient. The models’ performances, compared to the results obtained with the original 
images, are presented in Table 11.

Super-resolution (SR) model performance varied substantially across datasets from Algeria, Egypt, Ghana, 
Malawi, and Uganda:

BSRGAN consistently underperformed: Negative impacts were most pronounced in Uganda (0% accuracy, 
-5.08% F1, -13.95% Kappa) and Egypt (-11%, -9.3%, -4.03%), with minor negative effects observed in Ghana and 
Malawi. Performance remained neutral in Algeria.

DBPISR presented the most inconsistent performance: While highly effective in Ghana (+42.67%, +30.71%, 
+31.14%) and Uganda (+34.67%, +12.63%, +17.21%), it exhibited substantial degradation in Algeria (negative 
changes across all metrics) and Malawi (-9%, -19.73%, -30.6%). In Egypt, it yielded increased accuracy and F1-
score but decreased Kappa, indicating inconsistent prediction agreement.

Real-ESRGAN consistently demonstrated strong performance: In Algeria, it yielded significant improvements 
across all metrics (+11% accuracy, +5.57% F1-score, +11.66% Kappa). Similar positive trends were observed 
in Egypt (+6% accuracy, +3.44% F1, +2.17% Kappa), Ghana (+13.34%, +14.51%, +14.14% respectively), and 
Malawi (+13%, +6.54%, +8.2% respectively). However, its impact in Uganda was negligible.

SwinIR exhibited a mixed performance profile: While demonstrating positive gains in Algeria, though less 
pronounced than Real-ESRGAN, it yielded modest improvements in Egypt (+2%, +0.92%, +1.76% for accuracy, 
F1 score, and Kappa respectively) and Ghana (+6.67%, +8.07%, +4.49%), and negligible impact in Uganda. 
Notably, it showed robust performance in Malawi (+18%, +10.15%, +12.2%).

SwinIR_large generally struggled, exhibiting negligible or negative impacts across Ghana, Malawi, and 
Uganda. Performance was neutral in Algeria. In Egypt, despite a Kappa increase (+4.27%), minimal gains in 
accuracy and F1-score suggested limited overall benefit.

These variations underscore the complex interplay between model architectures and dataset characteristics.
By cross-referencing the image quality data (PSNR, SSIM) with classification performance, we can draw the 

following findings: Real-ESRGAN offers a balanced combination of good image quality (PSNR and SSIM) and 
strong classification performance in almost all countries, except in Uganda, where its improvements are more 
neutral. Nevertheless, it remains the most suitable model across the five countries overall. BSRGAN shows good 
image quality, with the highest (PSNR and SSIM) scores in several regions (notably in Uganda), but it fails to 
translate this quality into better classification performance. This suggests an inefficiency in generalizing to the 
classification task. SwinIR exhibits lower image quality, but its classification performance, especially in Malawi, 
demonstrates that it can compensate for inferior image quality through better adaptation to the classification 
data. DBPISR has very low PSNR scores, which directly correlates with its poor classification performance in 
almost all countries, except Uganda and Ghana. We evaluated the performance of five super-resolution (SR) 
models, DBPISR, BSRGAN, Real-ESRGAN, SwinIR, and SwinIR_large, for enhancing ultrasound image quality 
in various African contexts. Evaluation is based on five metrics: Peak Signal-to-Noise Ratio and Structural 
Similarity Index Measure, then classification metrics as Accuracy, F1 score, and Kappa coefficient ( See Fig. 12). 
Real-ESRGAN consistently outperformed other super-resolution models, demonstrating robustness and high-
quality reconstruction even in settings with equipment limitations common in Africa. SwinIR, including 
SwinIR_large, excelled in settings with higher-quality equipment (Algeria and Malawi), demonstrating its 
suitability for environments with fewer hardware limitations. DBPISR consistently underperformed, proving 
unsuitable for widespread use in the evaluated African contexts.

Key observations: evaluating model performance by metric

•	 PSNR: BSRGAN and Real-ESRGAN exhibited high PSNR values, signifying good reconstruction quality and 
minimal noise. DBPISR consistently demonstrated low PSNR, particularly in Egypt, suggesting inferior im-
age quality.

•	 SSIM: Real-ESRGAN consistently achieved high SSIM scores (> 0.9), indicating excellent reconstruction fi-
delity. SwinIR_large and BSRGAN also performed well, particularly in Algeria and Ghana.

•	 NIQE : Real-ESRGAN achieved the lowest NIQE scores, reflecting the highest image naturalness, particularly 
in Ghana (1.34) and Uganda (3.69). DBPISR consistently yielded the highest NIQE scores, indicating signifi-
cant artifacts and reduced image quality, with Algeria (19.62) being the most affected. BSRGAN demonstrat-
ed competitive NIQE performance in Malawi (6.42) and Uganda (3.95), maintaining reasonable naturalness.

•	 BRISQUE : BSRGAN consistently exhibited low BRISQUE scores, particularly in Algeria (44.28) and Uganda 
(43.20), underscoring its superior perceptual quality. DBPISR recorded the highest BRISQUE scores, notably 
in Ghana (89.84), indicating the poorest perceptual image quality. Real-ESRGAN displayed moderate BRIS-
QUE performance, with its best results observed in Egypt (56.24).

•	 Accuracy: Real-ESRGAN achieved near-perfect accuracy in Algeria and remained a top performer in Malawi. 
All models struggled in Ghana, suggesting data-related challenges. DBPISR exhibited the lowest accuracy 
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across all countries, with Ghana (48%) and Malawi (57%). BSRGAN and SwinIR performed well in Algeria 
but failed to generalize effectively in Ghana and Uganda.

•	 F1 score: Real-ESRGAN and SwinIR excelled in Algeria and Malawi. Ghana posed challenges for all models, 
suggesting data-specific limitations.

•	 Kappa coefficient: Real-ESRGAN achieved the highest Kappa values, particularly in Algeria (92.33%) and Ma-
lawi (71%), indicating reliable classification performance. SwinIR and SwinIR_large followed while DBPISR 
performed poorly, particularly in Egypt.

	C.	�  Medical expert evaluation: MOS for assessing SR model quality: In our study, experienced gynecologists eval-
uated the visual quality and diagnostic utility of ultrasound images enhanced by five super-resolution (SR) 
models-BSRGAN, DBPISR, SwinIR, SwinIR_Large, and Real-ESRGAN-alongside the original ultrasound 
images through a form that contains a set of questions, as illustrated in Fig. 13. The assessment focused 
essentially on critical criteria, including contour sharpness, fine detail visibility, noise reduction, absence of 
artifacts, and overall diagnostic relevance and an evaluation of “diagnostic confidence” based on three key 
questions: ”Does the image quality allow for clear identification of anatomical structures? Does this image 
enhance your confidence in the diagnosis? Are there any features in the image that might contribute to a 
potential misdiagnosis?” This Mean Opinion Score (MOS) was assessed on a five-point scale: 1 represents 
poor quality, and 5 reflects exceptional quality. Diagnostic confidence was also assessed, emphasizing the 
clarity of anatomical structures and the potential of enhanced images to improve diagnostic certainty. Eval-
uators highlighted cases where artifacts or inconsistencies could lead to misinterpretation. These findings 
connect computational performance metrics with real-world clinical applicability, offering valuable insights 
into the strengths and limitations of SR models in medical imaging. A statistical analysis was conducted to 
assess the performance of various image enhancement methods using descriptive measures. Specifically, 
the following were calculated: The mean to evaluate the overall performance of each method. The standard 
deviation to measure the variability of the results for each method. The median and quartiles to examine 
the distribution of scores and identify the central tendency of the data, particularly when extreme values 
may influence the results. By applying these methods, the stability and performance of each image enhance-
ment technique were compared, providing a comprehensive overview of the diagnostic results. With the 
first doctor in Fig. 13, SwinIR illustred the highest performance with a score of 3.6, slightly outperforming 
SwinIR_LARGE at 3.4 and BSRGAN at 3.2. The Real-ESRGAN model achieved the highest score of 4.0, 
presenting a notable difference of 0.8 from BSRGAN. DBPISR performed similarly to SwinIR, both scoring 
3.6, with a 0.4 difference from BSRGAN. The differences between SwinIR and BSRGAN, SwinIR_LARGE 
and BSRGAN, and DBPISR and BSRGAN were relatively small, ranging from 0.2 to 0.4. For Doctor Nº2, 
SwinIR scored 3.5, outperforming SwinIR_LARGE at 3.2 and BSRGAN at 2.6. Real-ESRGAN achieved the 
highest score of 4.1, showing a significant difference of 1.5 from BSRGAN. DBPISR performed better than 
BSRGAN, with a score of 3.7, showing a 1.1-point difference. The differences between SwinIR and BSRGAN, 

Figure 12.  Performance comparison of super-resolution models for African countries: Algeria, Egypt, Ghana, 
Malawi and Uganda.
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SwinIR_LARGE and BSRGAN, and DBPISR and BSRGAN were more pronounced, ranging from 0.6 to 
1.5. For Doctor Nº3 in Fig. 13c , SwinIR scored 3.8, surpassing SwinIR_LARGE at 3.5 and BSRGAN at 2.9. 
Real-ESRGAN achieved the highest score of 4.2, with a notable difference of 1.3 from BSRGAN. DBPISR 
performed similarly to SwinIR, both scoring 3.8, with a 0.9-point difference from BSRGAN. The differences 
between SwinIR and BSRGAN, SwinIR_LARGE and BSRGAN, and DBPISR and BSRGAN ranged from 
0.6 to 1.3. In Fig. 13d, SwinIR achieved a score of 4.2, exceeding both SwinIR_LARGE (3.8) and BSRGAN 
(3.6). Real-ESRGAN achieved the highest score of 4.3, surpassing BSRGAN by 0.7 points. DBPISR scored 
4.0, showing a 0.4-point difference from BSRGAN. The differences between SwinIR, SwinIR_LARGE, DB-
PISR, and BSRGAN were generally minor, ranging from 0.2 to 0.7. These results indicate that, while image 
enhancement models effectively fulfill their initial objectives ( as enhancing face or natural images ), their 
performance can vary significantly when applied to ultrasound images. Such images, often characterized by 
artifacts like speckle noise, pose complex challenges for these models. Furthermore, SwinIR surpassed other 
super-resolution models in performance. Real-ESRGAN ranks last, alongside the DBPISR model. However, 
the models considered most competitive, according to medical experts, are SwinIR_LARGE and BSRGAN, 
following SwinIR model.

Clinical implications and real-world applications
Our findings suggest that SR has significant potential to enhance both clinical decision-making and patient 
outcomes in resource-constrained and mainstream hospital settings:

Clinical impact in low-resource settings. One of the most pressing challenges in developing countries is the 
limited availability of high-end ultrasound devices. By improving image resolution and reducing noise, SR 
models facilitate clearer visualization of fetal anatomy, enabling the detection of subtle anomalies that might 
otherwise remain unidentified. This is crucial where mid-range or outdated ultrasound equipment often lacks 
the resolution required for detailed fetal assessment. Consequently, implementing SR can help address care 
disparities and improve diagnostic confidence in prenatal screening.

Operator independence and workflow enhancement. Ultrasound imaging commonly depends on the 
operator’s expertise. SR offers a partial mitigation strategy by enhancing suboptimal images, thereby reducing 
the impact of operator-dependent variability on diagnostic accuracy. This democratization of ultrasound quality 
can be especially beneficial for clinicians or radiology technicians in the early stages of training or in settings 
with constrained human resources. Furthermore, routine clinical workflows can be preserved by integrating SR 
algorithms as a post-processing step or via embedded devices that generate enhanced scans in near-real time.

Practical deployment and telemedicine. Beyond laboratory settings, the ability to deploy SR models on 
embedded AI platforms (e.g., Raspberry Pi, NVIDIA Jetson Nano) introduces a feasible pathway for real-time 
or near-real-time enhancements in the clinic. This scalability is also valuable for telemedicine applications. 

Figure 13.  Evaluation results from the medical experts on the effectiveness of the studied SR models.
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In remote teleconsultations, higher-quality images reduce diagnostic ambiguities when experts are offsite, 
thus accelerating second opinions and facilitating timely interventions. Such setups can play a pivotal role in 
underserved regions, where specialist access is limited and internet bandwidth is often constrained.

Cost effectiveness and equipment lifespan. Financial constraints frequently limit the procurement of advanced 
imaging systems. SR can extend the usable lifespan of older ultrasound machines, allowing facilities to maintain 
diagnostic capabilities comparable to modern systems without incurring excessive replacement costs. Hospitals 
and small clinics could reallocate budgets more effectively, potentially increasing the number of ultrasound 
devices in operation rather than purchasing a few high-end machines.

Outlook and future directions. Although SR shows promise, future research needs to broaden the scope of 
training data to encompass a wider range of fetal conditions and patient demographics. Evaluations could be 
expanded to time-series ultrasound (video) for improved fetal movement tracking. Additionally, collaborations 
with manufacturers might yield ultrasound machines pre-equipped with SR options, further optimizing 
diagnostic pathways. With advances in federated learning, privacy-preserving systems could be established, thus 
boosting data sharing for model improvement while respecting patient confidentiality.

Overall, by improving image clarity where it is needed most and minimizing the technological and training 
gaps in developing countries, SR strategies hold promise as a cost-conscious and practical approach to elevating 
prenatal care globally.

Conclusion
In this paper, our findings indicate that the analysis of super-resolution (SR) model performance in Africa, 
based on PSNR, SSIM, BRISQUE, and NIQE metrics, and classification performance (Accuracy, F1 Score, 
Kappa), reveals interesting but nuanced results. Real-ESRGAN emerged as a promising candidate, consistently 
demonstrating strong performance, characterized by high image quality metrics and robust classification 
accuracy. This is particularly noteworthy given the inherent limitations of smaller, less diverse datasets and the 
variability in image quality often encountered in African healthcare settings.

However, we observed some performance fluctuations with Real-ESRGAN across different datasets, 
suggesting a potential sensitivity to training data characteristics such as dataset size and image diversity. This 
highlights the importance of carefully considering data constraints when selecting and deploying such models.

Our results demonstrate that while Real-ESRGAN consistently ranked among the top performers closely 
followed by BSRGAN, other models, such as SwinIR and SwinIR_large, also showed promise, particularly in 
specific contexts like Algeria and Malawi. Conversely, this study reveals that DBPISR, employing an internal 
learning approach, consistently underperformed, highlighting potential limitations of this method for this 
application.

This study acknowledges several limitations, particularly the restricted scope of our training datasets, 
primarily sourced from hospital and clinic settings. To obtain more generalizable and robust results applicable 
across the African continent, future research should prioritize access to larger and more diverse datasets. This will 
enable more comprehensive model evaluation and facilitate the development of robust, reliable super-resolution 
techniques tailored to the unique challenges and opportunities presented by African healthcare contexts.

Building upon the findings of this study, future research should prioritize :

•	 Establish comprehensive image datasets: Collecting larger, more diverse image datasets that reflect the wide 
range of geographical regions, equipment types, and medical presentations found across developing countries 
is crucial.

•	 Leverage transfer learning: Investigating and implementing transfer learning techniques can help fine-tune 
existing super-resolution models using data specific to African contexts, potentially leading to performance 
gains under real-world conditions.

•	 Enhancing External Learning Models: Enhance external learning models: Providing these models with ex-
tensive, high-quality ultrasound image datasets will enhance their generalization capabilities and ability to 
handle diverse ultrasound inputs.

•	 Develop context-specific solutions: Encouraging the creation and deployment of super-resolution solutions 
specifically designed for the unique needs and constraints of developing countries will ensure optimal impact. 
These solutions should consider limitations in hardware availability and address the specific characteristics 
of local datasets.

•	 Deploying super-resolution models or AI solutions in real-world clinical settings, particularly in low-resource 
environments, presents both intriguing opportunities and significant challenges. Computational time and 
hardware limitations can be mitigated using embedded AI solutions, such as Nvidia Jetson Nano cards or 
Raspberry Pi 5, which offer cost-effective and portable platforms for edge AI applications. Moreover, re-
cent advancements in federated learning provide a promising solution by enabling models to be trained and 
deployed on edge devices without requiring centralized data collection. This approach not only addresses 
privacy concerns but also optimizes computational efficiency, making AI solutions more accessible in re-
source-constrained environments60. Looking ahead, we plan to extend our work by applying super-resolution 
models to ultrasound video sequences. This will involve the integration of tiny machine learning (TinyML) 
approaches to streamline and reduce the complexity of the model architectures, further enhancing their suit-
ability for real-time applications on lightweight hardware platforms.

Super-resolution image reconstruction task is an evolving field that requires further research to enhance model 
performance and make them more efficient for diverse applications, including medical image restoration. 
Further exploration in these areas holds promise for significant progress in super-resolution technology, 
ultimately leading to more accurate and efficient medical imaging. By continuing to research these fields, we 
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can expect substantial improvements in super-resolution technology, ultimately resulting in more precise and 
efficient medical imaging. It’s noteworthy that these countries are still developing nations, where ultrasound 
equipment may be of lower quality compared to those used in European countries like Spain. Addressing this 
gap underscores the necessity for accessible and effective image enhancement methods capable of overcoming 
hardware limitations, thereby improving healthcare delivery irrespective of available resources.

Data resources accessibility
The Spanish database is available at Zenodo.org/record/3904280, and the African databases are available at

https://zenodo.org/record/7540448. Both are freely accessible.
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